If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4=8x-1/5
We move all terms to the left:
3x^2-4-(8x-1/5)=0
We add all the numbers together, and all the variables
3x^2-(+8x-1/5)-4=0
We get rid of parentheses
3x^2-8x-4+1/5=0
We multiply all the terms by the denominator
3x^2*5-8x*5+1-4*5=0
We add all the numbers together, and all the variables
3x^2*5-8x*5-19=0
Wy multiply elements
15x^2-40x-19=0
a = 15; b = -40; c = -19;
Δ = b2-4ac
Δ = -402-4·15·(-19)
Δ = 2740
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2740}=\sqrt{4*685}=\sqrt{4}*\sqrt{685}=2\sqrt{685}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{685}}{2*15}=\frac{40-2\sqrt{685}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{685}}{2*15}=\frac{40+2\sqrt{685}}{30} $
| 8/2=7m+4/48 | | (x+7)/3=11 | | (x+1)+(x-1)=8+x | | 8k+4(7k-8)-6k=3(6k-12)+64 | | -4+-h=10 | | X+13=2(x+1) | | 155=93-u | | 20w-19w-w+4w=20 | | 18=5(u+2)-7u | | 5j-j+-9j=-5 | | 0.1^n=3 | | 3x-9=4-8x | | 9(3-y)=-10y | | 8x–31=5x-4 | | 5h+h-3h+2h-3h=4 | | 11/14x+1/7=5/7x | | -3(6.5-3.7m)+3.3(6.4m+7.8)=m+3.4+8.1 | | 4(5x+6)=20x+26 | | y=8(1-0.150)^3 | | z+28=6 | | 2x=-4(x-4) | | 0.6(5+6.6r)+0.4r=4.3r-1.479(11.4-13.65r) | | 18x-2x=4x | | 4x+47=9 | | 8x-12=9x+24 | | -8.6(-8.8-13.2x)-8.5x=8.1(5.61-9.033x)+0.6x | | y/5+15=35 | | x-4/11=4 | | 4/9+4(x-1)=28/9-(×-7×)+2 | | -4.8-5(2n-0.9)=2.5(n+9.6) | | 6x2-4x-10=0 | | 5x+1=3×+7 |